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ABSTRACT. 

Synonymous gene regulation, defined as driving shared temporal and/or spatial 

expression of groups of genes, is likely predicated on genomic elements that contain 

similar modules of certain transcription factor binding sites (TFBS). We have developed 

a method to scan vertebrate genomes for evolutionary conserved modules of TFBS in a 

predefined configuration, and created a tool, named SynoR that identify synonymous 

regulatory elements (SREs) in vertebrate genomes. SynoR performs de novo 

identification of SREs utilizing known patterns of TFBS in active regulatory elements 

(REs) as seeds for genome scans. Layers of multiple-species conservation allow the use 

of differential phylogenetic sequence conservation filters in the search of SREs and the 

results are displayed as to provide an extensive annotation of genes containing detected 

REs. Gene Ontology categories are utilized to further functionally classify the identified 



genes, and integrated GNF Expression Atlas 2 data allow the cataloging of tissue-

specificities of the predicted SREs. We illustrate how this new tool can be used to 

establish a linkage between human diseases and noncoding genomic content. SynoR is 

publicly available at http://synor.dcode.org.  

 

INTRODUCTION 

The complex patterns of gene regulation in vertebrates arise from the combination 

of the regionalized expression of multiple transcription factors and their interactions with 

target cis-regulatory units consisting of modules of TFBSs. The outcome of these 

interactions, either the activation or repression of genes, as well as the structural nature of 

the REs have served as the basis for their classification in various categories, such as 

enhancers, repressors, silencers, insulators, and locus control regions. Although in 

simpler organisms such as yeast, bacteria and viruses REs are usually associated with the 

promoters of their target genes, in more complex organisms, especially vertebrates, REs 

are often positioned remotely from the genes they regulate – sometimes being as far away 

as a megabase from the transcriptional start site of a gene (1,2). Therefore, the general 

architectural features of complex gene regulatory networks, consisting of multiple distant 

REs distributed over long distances up and downstream of a gene, makes their 

identification challenging. Comparative genomics was shown to be  instrumental in 

facilitating the genomic search for REs (3-5). For example, comparisons of 

phylogenetically distant species  proved especially effective in detecting REs associated 

with certain categories of genes, such as developmental genes involved in embryogenesis 

(1,2,6). Despite this progress in identification of REs, the location of the majority of 



vertebrate REs remains unknown, owing partially to our lack of understanding about 

what are the fundamental components of REs, and whether their organizational rules (if 

any) can be used as signatures for the genome-wide identification of regulatory elements 

that drive the expression of multiple genes in similar, synonymous patterns (SREs). 

Toward this end, it has been shown recently that, in invertebrates, searching for TFBSs 

clustered in defined motifs allow for the identification of SREs (7-9). Recently, those 

observations were expanded to vertebrates, with studies illustrating that genome scans 

searching for SREs using defined TFBS motifs as seeds are feasible (10,11).  

Our goal was to expand on these observations, developing and testing a strategy 

to carry out genome-wide scans searching for SREs using evolutionarily conserved TFBS 

motifs. Known TFBS structures of REs, defined as a cluster of TFBS and their defined 

spatial order and distribution, were used as seeds to scan genomes in search for novel 

REs that might differ from the seed element at the sequence level, but are synonymous in 

function – SREs. We created a publicly available tool, SynoR (http://synor.dcode.org), 

which provides the users with the ability to extend the identification of single gene 

regulatory genomic structures to the whole genome scale and to identify novel genes with 

synonymous regulation. Illustrative examples are provided as how de novo observations 

obtained with the use of SynoR can be used in prioritizing conserved elements for studies 

of human diseases. 

 

RESULTS 

Design and features of the SynoR tool. 



 SynoR utilizes pre-computed annotations of conserved TFBS (cTFBS) in 

vertebrate genomes (as obtained through multi-species genome alignments) adopted from 

the ECR Browser (12,13) (http://ecrbrowser.dcode.org). It scans the genome distribution 

of cTFBS in a search for types of TFBSs in defined spatial configurations  that match the 

seed profile defined by the user (Figure 1). Upon the localization of the TFBS modules in 

the genome, SynoR overlaps their coordinates with genomic annotation (known genes 

from the UCSC Genome Browser (14)) to categorize the identified modules into 

promoter elements, UTRs, introns, intergenic elements, and coding exons. The ratio of 

newly identified elements overlapping with coding exons is expected to be negligibly 

small, serving as an immediate quantifier of the specificity of prediction (although 

sometimes a sizeable ratio may reflect the detection of genes with duplicated protein 

domains being recognized as binding sites). The online results page also offers the 

conservation analysis of all the identified modules, obtained from the genome alignment 

and comparisons with different species. Genes bracketing the identified noncoding 

elements or contained within them are selected for a further two-step analysis aimed at 

determining the synonymous functional nature (if any) of the identified TFBS modules. 

As a first step, the Gene Ontology (GO) (15,16) categories for each gene, reflecting their 

biological function, are defined. An enrichment in GO categories that match the known 

functional activity of the seed RE provides with an effective verification of the sensitivity 

of the genome scans. In a later step, the analysis using the GNF Expression Atlas 2 (17) 

is performed to define the tissue-specificity of the genes in the vicinity of the identified 

SREs. Comparative analysis of the expression of identified genes versus the average 



expression of all the genes in the genome highlights a subset of tissues, in which the 

genes bracketing the identified SREs are preferentially expressed. 

 A priori knowledge of  transcription factors (TF) or TFBS modules involved in 

a particular biochemical process is helpful in determining the seed signatures used in the 

SynoR scans.  Numerous studies have already reported on the existence of specific 

combinatorial TFBS in modules responsible for the regulation of various biological 

processes including neuronal development (18-20), heart formation (21-23), oncogenesis 

(24-26), muscle development (27), etc. All these pre-defined patterns of TFBS 

organization can be utilized to define the minimal TFBS content of a seed RE and initiate 

a genome scan searching for SREs of that element. Studies that generate additional 

sequence positional information on active multiple TFBS (such as (28) or (29), for 

example) can be effectively used to establish the configuration of spatial constraints and 

TFBS ordering, thus increasing the specificity of a SynoR search. Nevertheless, the 

program also accommodates user-defined seeds, allowing for the investigation of new 

modular patterns of TFBSs that may be enriched in the vicinity of genes with 

synonymous regulation.   

 

SynoR application for biological discoveries.  

The PAX6 gene is a member of the PAX family of transcription factors that are crucial 

during early development, especially in the specification of eyes and developing central 

nervous system. Recently, it was demonstrated that aspects of PAX6 regulation is 

achieved partially by autoregulation, through an intronic element deeply conserved in 

vertebrates, including mammals and fish (30). PAX6 protein binds to its binding site  



within a conserved element (CE2) in  PAX6 intron 7 resulting in the upregulation in the 

expression of PAX6 (30). Using SynoR, we searched for an enriched module of 

conserved PAX6 sites to identify other putative elements with an activity synonymous to  

the CE2 element of PAX6. A defined parameter was set requiring the presence of a 

cluster of at least 3 PAX6 TFBS, conserved in human and chicken, and with each TFBS 

no further apart from each other than 40 bp.  Only three such modules were identified in 

the human genome, with only one displaying deep sequence conservation in vertebrates  

(humans, mice, chicken, frog, and fish), a pattern strongly reminiscent of that of the 

PAX6 CE2 element. Remarkably, this deeply conserved module is embedded in an intron 

of PAX5, another member of the PAX family of transcription factors. Further analysis of 

the 196kb PAX5 locus conservation identified 159 human/mouse ECRs that could 

potentially represent REs of this gene. The SRE identified in the 5th intron of PAX5 

overlaps with one of these 159 ECRs, 832bps long and 88% conserved between human 

and mouse. This ECR that has been conserved throughout the vertebrate lineage, 

including chicken, frog and fugu is the only ECR in this locus conserved between 

humans and fish. The module of 3 PAX6 TFBS is located in the middle of this intronic 

ECR and the three TFBS are well conserved in human, mouse, chicken and frog lineages, 

with one of these three sites also conserved in fugu. These data suggest that the SynoR 

genome scan is sufficient for the identification of a critical PAX5 regulatory element 

responsible for establishing proper gene regulation by the PAX6 protein through a cis-

regulatory unit synonymous to the autoregulatory element in PAX6. From a biological 

perspective, it is very important to understand the mechanisms of PAX5 regulation as the 

strategies to downregulate PAX5 expression in donor pro-B cells could be used to restore 



T-cell development in patients with various immunodeficiencies, ranging from inherited 

syndromes to AIDS (31).. Our results suggest that the direct targeting of this genomic 

element or indirect targeting of the PAX5 expression through decreasing the PAX6 

protein concentration might provide the means to achieve the sought after, clinically 

relevant, downregulation of PAX5 expression.  

 

SREs associated with synergistic activation of gene expression in cardiac myocytes. 

 The GNF Expression Atlas 2 summarizes the expression patterns of human, 

mouse, and rat genes in several selected tissues using whole genome microarray 

experiments (17). These data provide immediate, indicative evidence of tissue-specificity 

of genes bracketing predicted SREs. If a particular SRE is associated with a gene 

expressed in a set of defined tissues, for example, these tissues should also correspond to 

the expression pattern of the candidate genes sharing that SRE motif, identified by 

SynoR. To assess the applicability of SynoR tissue-specificity analysis of predicted 

SREs, we scanned the human genome for the combinatorial module of two cTFBS, SRF 

(serum response factor) and SP1. Multiple lines of evidence support the notion that these 

TFs cooperatively participate in orchestrating gene expression in heart and vascular 

tissues (32-36). We applied SynoR to predict targets of synergistic SRF/SP1 gene 

regulation in the human genome using as a seed motif the presence of these TFBS 

separated by less than 40 bps and being conserved in human and mouse. One hundred 

fourteen noncoding modules were identified in this scan, twenty-three (20%) of which 

overlapping with promoter regions. Taking into account the density of human/mouse 

ECRs in the human genome (37), the probability of such a ratio of elements being in 



promoters by chance is less than 10-5, suggestive of an enrichment in functional SREs  

identified in this scan. Expression analysis of the genes that either contain or flank the 

identified SREs presented a very distinct tissue-specificity of these genes. Sixty four 

percent of them (88 out of 138) are specifically expressed in cardiac myocytes while 

others are expressed in smooth muscle, heart, and other tissues (Figure 3). This general 

observation is in agreement with the experimental data on expression of the studied TFs 

supporting the notion that GNF Expression Atlas 2 data integrated with SynoR 

predictions may provide an effective and straightforward annotation of tissue specificity 

of identified elements and search patterns. Together, these data support the notion that 

using this pair of cTFBS as seeds for a genome-wide scan successfully identifies SREs 

likely responsible for the shared pattern of expression of their corresponding genes. 

Further biochemical studies are required to assess the in vivo functional activity of these 

elements and investigate their possible role in cardio-vascular diseases.  

 

Other SynoR features 

 Further functions and features associated with SynoR include GO classification of 

genes bracketing the identified noncoding modules, multi-species evolutionary 

conservation analysis of identified modules, and categorization of modules based on gene 

annotation (as promoter, UTR, intronic, intergenic or coding elements). To illustrate the 

applicability of the latter function, we scanned the human genome for a module of 3 

NRSF human/mouse cTFBS. NRSF (neuron-restrictive silencer factor) plays a key role in 

neuronal differentiation (38) and mediation of transcriptional repression of neuron-

specific genes in non-neuronal cells (39). Ten noncoding modules were identified, of 



which 3 within promoters , 4 in introns, and 4 in intergenic intervals. One of the 3 

promoters corresponds to that of Barhl1, a gene associated with neuronal migration (37), 

in an expression resembling that of the NRSF regulatory pathway. The remaining 2 

promoters identified in this scan correspond to uncharacterized genes, and these results 

raise, thus, the possibility that these genes represent new members in the NRSF pathway.  

 

METHODS 

Genome-wide annotation of conserved TFBS. 

 The ECR Browser tool (http://ecrbrowser.dcode.org) generates whole genome 

blastz-based alignments of vertebrate and invertebrate genomes (12). It currently operates 

with the genomes of the human, mouse, rat, chicken, dog, frog, 3 fish (tetraodon, 

zebrafish, and fugu), and 6 Drosophila species. To generate a dataset of conserved TFBS 

for SynoR scans, we have established an automated annotation of evolutionary conserved 

TFBS based on the ECR Browser alignments. This was created by applying the rVista 2.0 

tool (http://rvista.dcode.org) (29) with “optimized-for-function” position weight matrix 

(PWM) thresholds (40) to different pairwise genome alignments. Currently, the 

annotation of the conserved TFBS is available for the human genome in alignments with 

several other genomes including mouse, chicken, frog, and fugu as well as for the mouse 

genome in the alignment with the chicken genome. The automated ECR Browser/rVista 

2.0 annotation processes other available genomes, gradually expanding the list of genome 

alignments with the conserved TFBS. Table 1 summarizes the number of conserved 

TFBS in the human genome as compared to different species. SynoR scans through these 

conserved TFBS to identify specific TFBS modules. 



 

Defining TFBS modules as seeds for the genome scans. 

 DNA footprint of a regulatory TFBS module is a two-dimensional projection of 

the three-dimensional complex of TF molecules interacting with each other and with the 

chromosome to establish a gene transcription signal. The number of different TFs in a 

module, the number of TFBS, the spatial constraints, the order of TFBS, and relative 

strands of TFBS differ for different regulatory pathways. SynoR requires user input 

describing a TFBS module structure to initiate a genome scan. In practical terms, three 

tiers of information on TFBS modules might be available: (1) a list of TFs known to 

participate in a particular regulatory pathway, (2) a set of spatial constraints separating 

different TFBS, and (3) the order and orientation of individual TFBS in a module. While 

the TF content is essential for the genome scans, the other two tiers of information 

effectively refine the module signature and are provided as optional features. Previous 

studies on regulatory pathways and signaling networks might be sufficient to identify key 

players of a particular biochemical process and consequently to define the TF content. 

Previous characterization of a locus using tools similar to rVista 2.0 or multiTF (40) can 

establish a detailed structure of regulatory modules and relative order of TFBS. SynoR is 

limited in selection of TFBS to the list of TFBS available from the TFANSFAC database 

(41), which is utilized by the rVista 2.0 tool in genome scans. 

 

Identification of statistically enriched GO categories. 

 To predict the putative biological function of the identified elements SynoR 

performs a stepwise GO classification of the host genes that either flank or contain the 



noncoding subset of these elements. At the first step, the GO annotation is done by 

independently assigning a list of corresponding GO categories to each of these genes.  

Subsequently, the population counts are established for different GO categories – how 

many genes contain a particular GO category in their annotation. These GO category 

population counts are then compared to the population counts originating from all the 

genes in the base genome (with the limitation to the GO categories that have 10 or more 

population counts in the base genome). Finally, the program determines the GO 

categories that are statistically enriched in population counts as compared to what would 

be expected in a purely by chance manner. 

 In practice, first we count the expectation number of population counts for each i-

th GO category as: 
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where the standard deviation iσ  is estimated using the Poisson distribution as i
exN . 

All the GO categories with the absolute z-value greater than 2.0 (that corresponds to the 



less than 5% probability of the observation occurring simply by chance) are reported to 

the user as either statistically enriched or depleted (depending on the sign of the z-value). 

 

Establishing tissue-specificities of identified genes. 

 To predict tissue-specificity (if any) of the identified genes with noncoding 

elements, SynoR analyzes the GNF Expression Atlas 2 (17) data that corresponds to these 

genes. It performs a two-step clustering analysis of tissue-specificity in expression of the 

genes. First, the clustering of the data into groups of co-expressed genes is performed 

using the Cluster 3.0 tool (42) and the results are visualized in a micro-array expression 

profile style profile (Figure 3). This allows a straightforward visual identification of 

subsets of genes co-expressed in particular tissues. At the second step, SynoR identifies a 

set of tissues, in which the genes are either significantly overexpressed or suppressed. In 

order to do so, the tool calculates the difference between the number of overexpressed 

and the number of suppressed genes for each tissue i, jδ . An estimate for an average 

difference δ  and a corresponding standard deviation δσ  are calculated using the 

distribution of jδ  across all the tissues. That allows defining a iz -value describing 

deviation in the observed difference in the number of overexpressed and suppressed 

genes versus the expectation for a given tissue; 

 
δσ

δδ −
= i

iz . 

The expression in tissues with an absolute z-value over 2.0 is reported as significantly 

increased/decreased, and in tissues with an absolute z-value over 1.0 as changed. It 

effectively allows prediction of tissue-specificity of the identified elements. 



In the search for tissue-specificities, performed by the Cluster 3.0 tool, SynoR 

eliminates absolute differences in expression in between different genes from the 

analysis. In order to do so, expression pattern of each gene across different tissues is 

normalized by dividing expression score in a particular tissue by the largest expression 

score in all the tissues. This effectively brings the average expression of highly expressed 

genes and the genes with a low level of expression to the same level and strongly 

highlights the differences in gene expression across different tisssues. Also, GNF Atlas2 

expression patterns in cancer cell lines and cell lines without profound tissue-specificity 

are excluded from the analysis to provide sampling of co-expression in normal tissues; 

thus providing a link between a predicted SRE and normal tissue specificity. 

 

DISCUSSION 

The identification of noncoding sequences conserved among vertebrates has 

served as the most important pillar leading to the identification of functional gene 

regulatory elements in the human genome (1-3,30). Nevertheless, the sheer degree of 

sequence conservation among mammals, associated with the time consuming nature of 

the functional assays designed to test these sequences preclude the ability to test all of 

these conserved noncoding elements. Moreover, recent data suggest that at least a 

sizeable fraction of these conserved sequences may not represent regulatory elements or 

be amenable for testing in the our current laboratory setting. Therefore, it has become 

essential to devise strategies aiming at the prioritization of a subset of conserved 

sequences for functional testing. The design and implementation of SynoR, a tool that 

allows for the identification of regulatory sequences with shared function represent an 



important ancillary strategy to identify the conserved genomic elements that are most 

likely to be functional, and testable in various transcription assays.  

The fundamental inference behind the conceptualization of SynoR is that 

regulatory elements with similar function (SREs) operate under similar organizational 

principles, the modular distribution of a defined set of TFBS. This principle has been 

previously validated in lower eukaryotes such as yeast, worm and flies, and recently 

evidence suggested that SREs may also be identifiable in humans. Our results support 

this notion, and SynoR represents a publicly available tool for the search of SREs with a 

broad range of options in adopting the search to different regulatory pathways. SynoR is 

equipped with multiple mechanisms of functional annotation of identified elements, 

which include multi-species evolutionary conservation analysis, GO functional 

characterization, and GNF Expression Atlas 2 analysis of tissue specificity of the 

identified genes. These mechanisms allow quantifying the reliability of SynoR genome 

scans and allows dissecting the set of identified elements into subcategories with distinct 

functions and evolutionary traits. 

In summary, we present a strategy to identify SREs in eukaryotic genomes, and 

describe the design of a new tool, SynoR aiding in the identification of non-coding 

sequences that are most likely to correspond to regulatory elements, that can be tested in 

the laboratory.   
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WEB SITES 

http://synor.dcode.org/ - SynoR genome miner for synonymous regulation, 

http://rvista.dcode.ort/ - rVista 2.0; identification of conserved TFBS in pairwise 

alignments, 

http://ecrbrowser.dcode.org/ - ECR Browser; alignment of multiple genomes, genome-

wide annotation of conserved TFBS. 



TABLES 

Table 1. Conserved TFBS in alignments of the human genome (hg17) to the mouse 

(mm5), chicken (galGal2), frog (xenTro1), and fugu (fr1) genomes (assembly indexes 

from the UCSC genome browser (14)). 

Organism mouse chicken frog fugu 

# of conserved TFBS 13,069,048 1,945,164 859,769 402,784 

 



FIGURES 

 

Figure 1. The schematic profile of SynoR genome scans and data analysis. 

 

 

 



 

Figure 2. Human/mouse/chicken/frog/fugu conservation visualization of the PAX5 locus 

with a zoom into an ECR conserved in all the species (chr9:36,968,521-36,969,352; 

NCBI Build 35). A module of 3 conserved PAX6 binding sites is located in the middle of 

this ECR as depicted by yellow boxed in the zoom in panel. Alignments were obtained 

from the ECR Browser (http://ecrbrowser.dcode.org) 

 

 



Figure 3. GNF Expression Atlas2 analysis for genes identified in the SRF/SP1 SynoR 

scan of the human genome. A subset of 46 genes including the SRF gene is presented. 

Cardiac myocytes with significant overexpression identified by solid red background. 

Light red and light green backgrounds correspond to the overexpressed and suppressed 

tissue categories. Different columns correspond to different tissues listed on top and 

different rows correspond to the identified genes listed on the right. The number in 

parenthesis following gene name provides a distance between an element and the gene in 

case of intergenic elements. 
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